Главная >> Геометрия 7—9 классы. Атанасян

 

 

 

 

§ 3. Четыре замечательные точки треугольника

Свойства биссектрисы угла

Докажем сначала теорему о биссектрисе угла.

Теорема

Каждая точка биссектрисы неразвёрнутого угла равноудалена от его сторон1.

    1 То есть равноудалена от прямых, содержащих стороны угла.

Обратно: каждая точка, лежащая внутри угла и равноудалённая от сторон угла, лежит на его биссектрисе.

Доказательство

1) Возьмём произвольную точку М на биссектрисе угла ВАС, проведём перпендикуляры МК и ML к прямым АВ и АС и докажем, что MK = ML (рис. 224). Рассмотрим прямоугольные треугольники AM К и AML. Они равны по гипотенузе и острому углу (AM — общая гипотенуза, ∠1=∠2 по условию). Следовательно, MK = ML.

2) Пусть точка М лежит внутри угла ВАС и равноудалена от его сторон АВ и АС. Докажем, что луч AM — биссектриса угла ВАС (см. рис. 224). Проведём перпендикуляры МК и ML к прямым АВ и АС. Прямоугольные треугольники АМК и AML равны по гипотенузе и катету (AM — общая гипотенуза, МК = ML по условию). Следовательно, ∠1 = ∠2. Но это и означает, что луч AM — биссектриса угла ВАС. Теорема доказана.

Следствие 1

Геометрическим местом точек плоскости, лежащих внутри неразвёрнутого угла и равноудалённых от сторон угла, является биссектриса этого угла.

Следствие 2

Биссектрисы треугольника пересекаются в одной точке.

В самом деле, обозначим буквой О точку пересечения биссектрис АА1 и ВВ1 треугольника АВС и проведём из этой точки перпендикуляры OK, OL и ОМ соответственно к прямым АВ, ВС и СА (рис. 225). По доказанной теореме ОК = ОМ и OK = OL. Поэтому ОМ = OL, т. е. точка О равноудалена от сторон угла АСВ и, значит, лежит на биссектрисе СС1 этого угла. Следовательно, все три биссектрисы треугольника АВС пересекаются в точке О, что и требовалось доказать.

 

 

Рейтинг@Mail.ru