Главная >> Информатика 8 класс. Босова

 

 

 

 

§ 1.3. Элементы алгебры логики

1.3.2. Логические операции

Высказывания бывают простые и сложные. Высказывание называется простым, если никакая его часть сама не является высказыванием. Сложные (составные) высказывания строятся из простых с помощью логических операций.

Рассмотрим основные логические операции, определённые над высказываниями. Все они соответствуют связкам, употребляемым в естественном языке.

Конъюнкция

Рассмотрим два высказывания: А = «Основоположником алгебры логики является Джордж Буль», В = «Исследования Клода Шеннона позволили применить алгебру логики в вычислительной технике». Очевидно, новое высказывание «Основоположником алгебры логики является Джордж Буль, и исследования Клода Шеннона позволили применить алгебру логики в вычислительной технике» истинно только в том случае, когда одновременно истинны оба исходных высказывания.

Самостоятельно установите истинность или ложность трёх рассмотренных выше высказываний.

Конъюнкция — логическая операция, ставящая в соответствие каждым двум высказываниям новое высказывание, являющееся истинным тогда и только тогда, когда оба исходных высказывания истинны.

Для записи конъюнкции используются следующие знаки: И, ∧, •, &.
Например: А И В, А ∧ В, А • В, А&В.

Конъюнкцию можно описать в виде таблицы, которую называют таблицей истинности:

В таблице истинности перечисляются все возможные значения исходных высказываний (столбцы А и В), причём соответствующие им двоичные числа, как правило, располагают в порядке возрастания: 00, 01, 10, 11. В последнем столбце записан результат выполнения логической операции для соответствующих операндов.

Конъюнкцию также называют логическим умножением.

Подумайте почему.

Продолжение >>>

 

 

Рейтинг@Mail.ru