Главная >> Физика 10 класс. Мякишев

 

 

 

 

Глава 14. Электростатика

 

§ 91. Примеры решения задач по теме «Напряжённость электрического поля. Принцип суперпозиции полей» (продолжение)

Задача 3. В однородное электрическое поле напряжённостью Е0 = 3 кН/Кл внесли точечный заряд q = 4 • 10-10 Кл. Определите напряжённость электрического поля в точке А, находящейся на расстоянии r = 3 см от точечного заряда. Отрезок, соединяющий заряд и точку А, перпендикулярен силовым линиям однородного электрического поля.

Р е ш е н и е. Согласно принципу суперпозиции напряжённость электрического поля в точке А равна векторной сумме напряжённостей однородного поля 0 и поля 1, созданного в этой точке внесённым электрическим зарядом. На рисунке 14.18 показаны эти два вектора и их сумма. По условию задачи векторы 0 и 1 взаимно перпендикулярны. Напряжённость поля точечного заряда

    Показаны эти два вектора и их сумма

Тогда напряжённость электрического поля в точке А равна:

    Напряжённость электрического поля в точке

Задача 4. В вершинах равностороннего треугольника со стороной а = 3 см находятся три точечных заряда q1 = q2 = 10-9 Кл, q3 = -2 • 10-9 Кл. Определите напряжённость электрического поля в центре треугольника в точке О.

Р е ш е н и е. Согласно принципу суперпозиции полей напряжённость поля в точке О равна векторной сумме напряжённостей полей, созданных каждым зарядом в отдельности: 0 = 1 + 2 + 3, причём где

На рисунке 14.19 показаны векторы напряжённостей 1, 2, 3. Сначала сложим векторы 1 и 2. Как видно из рисунка, угол между этими векторами равен 120°. Следовательно, модуль суммарного вектора равен модулю l1l и направлен в ту же сторону, что и вектор 3.

    Векторы напряжённостей

Окончательно запишем:

    Модуль суммарного вектора равен

<<< К началу      Окончание >>>

 

 

Рейтинг@Mail.ru