Главная >> Электродинамика. Физика 10-11 класс. Мякишев

 

 

 

 

Глава 2. Постоянный электрический ток

 

§ 2.6. Сверхпроводимость

Поведение вещества вблизи абсолютного нуля зачастую не имеет ничего общего с его поведением при обычных температурах. При низких температурах обнаруживаются многочисленные эффекты, которые при обычных условиях, как правило, оказываются замаскированными тепловым движением частиц. При температурах, близких к абсолютному нулю, наблюдается сверхпроводимость — способность вещества пропускать ток, не оказывая ему ни малейшего сопротивления.

Опыты Камерлинг-Оннеса

Открытие этого замечательного явления принадлежит выдающемуся голландскому ученому Гейке Камерлинг-Оннесу. Камерлинг-Оннес первым получил жидкий гелий (1908). Именно возможность работать при «гелиевых» температурах и позволила Камерлинг-Оннесу обнаружить сверхпроводимость.

В начале прошлого века существовали теории, которые давали совершенно противоположные предсказания относительно влияния низких температур на электропроводность.

С одной стороны, при понижении температуры колебания атомов в металлах становятся более слабыми и электроны сталкиваются с атомами реже. В результате проводимость возрастает и при Т = 0 сопротивление должно стремиться к нулю.

С другой стороны, электроны проводимости при низких температурах теснее связываются с атомами, что приводит к бесконечно большому сопротивлению при Т = 0.

Этот спор мог разрешить только опыт, который блестяще выполнил Камерлинг-Оннес. Сначала он измерял сопротивление платины при низких температурах. Полученные им результаты не укладывались в рамки существовавших теорий — при понижении температуры сопротивление платины приближалось к постоянному значению. Однако Камерлинг-Оннес обратил внимание на то, что сопротивление различных образцов при прочих равных условиях было тем меньше, чем чище оказывался металл. Отсюда он заключил, что существование сопротивления при Т → О К связано с наличием примесей в металле, и чистый металл при нулевой температуре должен обладать бесконечной проводимостью. Задача, таким образом, заключалась в исследовании возможно более чистого образца. Далее были проведены опыты с золотом, которое легче очистить от примесей, чем платину. При Т → О К удельное сопротивление золота оказалось меньше, чем у платины. Потом Камерлинг-Оннес обратился к исследованию ртути. Поскольку при обычной температуре ртуть находится в жидкой фазе, ее путем последовательной перегонки (дистилляции) удается очень хорошо освободить от примесей.

Результаты экспериментов с ртутью оказались неожиданными. С понижением температуры удельное сопротивление ртути сначала плавно убывало, а при температуре 4,1 К (что несколько ниже температуры кипения жидкого гелия) резко падало и становилось неизмеримо малым. Примерная зависимость удельного сопротивления от температуры для ртути представлена на рисунке 2.17.

28 апреля 1911 г. Камерлинг-Оннес сообщил о результатах своих экспериментов Нидерландской Королевской академии. Открытое явление он назвал сверхпроводимостью.

После открытия сверхпроводимости Камерлинг-Оннес поставил перед собой задачу: выяснить, насколько малым становится сопротивление сверхпроводника. Для этой цели ему необходимо было научиться измерять очень малые удельные сопротивления. С этой задачей он блестяще справился. По результатам проведенных экспериментов Камерлинг-Оннес пришел к выводу, что сопротивление сверхпроводника равно нулю.

Самое длительное зафиксированное до сих пор существование незатухающего тока в сверхпроводнике — около двух лет. (Этот ток циркулировал бы гораздо дольше, если бы не перерыв в снабжении жидким гелием, вызванный забастовкой транспортных рабочих.) Даже спустя два года никакого уменьшения силы циркулирующего тока не было замечено, что позволяет с полным основанием считать сопротивление сверхпроводника равным нулю.

Но этот вывод относится только к постоянному току. Для переменных токов сопротивление сверхпроводников отлично от нуля.

Практическое применение сверхпроводимости обещало быть очень перспективным. Ведь сверхпроводящий электромагнит совсем не потребляет электроэнергию, и с его помощью можно было бы легко получить сильные магнитные поля. Получение сильного магнитного поля требует больших токов, что приводит к выделению огромного количества теплоты в обмотках электромагнита. Это обстоятельство и ограничивает возможность получения сильных магнитных полей. Применение сверхпроводников в трансформаторах, генераторах, электродвигателях, ускорителях и т. д. сулило огромные преимущества, с лихвой окупающие необходимость работать при «гелиевых» температурах.

Камерлинг-Оннес первым приступил к созданию сверхпроводящего магнита. Однако здесь его поджидало разочарование. В 1913 г. он обнаружил, что в магнитном поле, индукция которого превышает некоторое пороговое значение, сверхпроводимость исчезает. Пропускание сильного электрического тока также разрушало сверхпроводимость.

Лишь много времени спустя были открыты сверхпроводящие материалы, способные выдерживать сильные магнитные поля и пропускать большие токи без разрушения сверхпроводимости. Понадобилось более сорока лет для создания первых сверхпроводящих магнитов, имеющих практическое значение.

В таблице 5 приведены температуры перехода в сверхпроводящее состояние некоторых веществ.

Объяснение сверхпроводимости было дано в 1967 г. учеными Дж. Бардиным, Л. Купером и Дж. Шриффером (США) и Н. Н. Боголюбовым (Россия) на основе квантовой теории.

Окончание параграфа >>>

 

 

Рейтинг@Mail.ru