Главная >> Финансовый менеджмент

Методы прогнозирования основных финансовых показателей

 

5.3.2. Методы обработки временных, пространственных и пространственно-временных совокупностей

Эти методы занимают ведущее место с позиции формализованного прогнозирования и существенно варьируют по сложности используемых алгоритмов. Выбор того или иного метода зависит от множества факторов, в том числе имеющихся в наличии исходных данных. По этому параметру можно выделить три типовые ситуации. Наличие временного ряда. Эта ситуация встречается на практике наиболее часто: финансовый менеджер или аналитик имеет в своем распоряжении данные о динамике показателя, на основании которых требуется построить приемлемый прогноз.

Динамический (или временной) ряд представляет собой совокупность значений изучаемого показателя, относящихся к некоторым последовательным интервалам или моментам времени; в первом случае ряд называется интервальным, во втором — моментным. Временной интервал, заложенный в основу ряда, чаще всего предполагается постоянным (год, месяц, день и т, п.). Пример интервального ряда: данные о годовом товарообороте магазина за ряд лет; пример моментного ряда: данные о стоимости основных средств данного магазина на начало года за ряд лет.

Динамический ряд обычно представляется следующим образом:

Динамический ряд обычно представляется следующим образом:

Наиболее типовая ситуация при обработке динамического ряда — выделение тренда. Это можно сделать с помощью различных методов1:

    1Напомним, что временной ряд характеризуется базовыми количественными характеристиками (темпом роста, темпом прироста, абсолютным значением одного темпа прироста и др.). Подробную информацию об этих характеристиках, равно как и о других инструментальных методах анализа рядов динамики можно найти: (Елисеева, Юзбашев. С. 445—525; Ковалев, 2001(a)].

     

  • метод «на глазок». Возможны различные его варианты: например, построение приблизительного графика зависимости по статистическим данным, представленным графически: расчет среднего темпа прироста; определение прогнозируемого значения уровня ряда, главным образом, на основе интуиции и с минимальным привлечением статистических данных. Аналитики шутливо называют подобный способ «методом трех П», от слов: пол, палец, потолок;
  • метод скользящей средней. Временной ряд делится на сегменты, содержащие, например, по три элемента ряда; для каждой «тройки» рассчитывается средняя. Этим достигается сглаживание отдельных выбросов от общей тенденции. Полученный ряд средних подвергается визуальному или количественному анализу для выявления тенденции;
  • метод усреднения по левой и правой половинам. Один из вариантов таков: ряд разбивают на две части, находят среднее значение признака для каждой половины, строят график в виде прямой, проходящей через найденные два значения;
  • метод наименьших квадратов (построение уравнения регрессии, чаще всего линейного, поскольку оно легче поддается интерпретации, хотя возможно построение любой нелинейной формы тренда).

Как пример применения регрессионных моделей для целей прогнозирования упомянем о двух методах: простом динамическом анализе и анализе с помощью авторегрессионных зависимостей. Первый метод исходит из предпосылки, что прогнозируемый показатель (у) изменяется прямо (обратно) пропорционально с течением времени. Поэтому для определения прогнозных значений показателя у строится, например, следующая зависимость;

уt = а0 + at.       (5.5)
где t - порядковый номер периода.

Параметры уравнения регрессии (a0. a1) находятся, как правило, методом наименьших квадратов. Подставляя в формулу нужное значение t можно рассчитать требуемый прогноз.

В основу второго метода заложена очевидная предпосылка о том, что экономические процессы имеют определенную специфику. Они отличаются, во-первых, взаимозависимостью и, во-вторых, определенной инерционностью. Последнее означает, что значение практически любого экономического показателя в момент времени ( зависит определенным образом от состояния этого показателя в предыдущих периодах (в данном случае мы абстрагируемся от влияния других факторов), т. е. значения прогнозируемого показателя в прошлых периодах должны рассматриваться как факторные признаки. Уравнение авторегрессионной зависимости в наиболее общей форме имеет вид

Уравнение авторегрессионной зависимости в наиболее общей форме имеет вид

Точные прогнозные значения могут быть получены уже при k = 1. На практике также нередко используют модификацию приведенного уравнения, вводя в него в качестве фактора период (момент) времени t. В этом случае уравнение регрессии будет иметь вид

уравнение регрессии будет иметь вид

Коэффициенты регрессии данного уравнения могут быть найдены методом наименьших квадратов. Соответствующая система нормальных уравнений будет иметь вид

Коэффициенты регрессии данного уравнения могут быть найдены методом наименьших квадратов.

Для характеристики адекватности уравнения авторегрессионной зависимости можно использовать величину среднего относительного линейного отклонения:

Для характеристики адекватности уравнения авторегрессионной зависимости можно использовать величину среднего относительного линейного отклонения:

Если < 15%, считается, что уравнение авторегрессии может использоваться в прогнозных целях. Отметим, что ввиду простоты расчета критерий довольно часто применяется при построении регрессионных моделей.

    Пример
    Используя аппарат авторегресс ион ых зависимостей, построить уравнение регрессии для прогнозирования объема реализации на основании следующих данных о динамике этого показателя (млн руб.): 17, 16, 21, 24, 23, 26, 28.
    Решение
    Уравнение регрессии будет строиться в виде уравнения (5.3); промежуточные данные для построения системы нормальных уравнений целесообразно оформлять следующим образом:

Наличие пространственной совокупности. Эта ситуация имеет место в том случае, если по некоторым причинам статистические данные о показателе отсутствуют либо есть основание полагать, что его значение определяется влиянием некоторых факторов. Может применяться многофакторный регрессионный анализ, представляющий собой распространение простого динамического анализа на многомерный случай. В результате качественного анализа выделяется k факторов (x1, x2.... , xk) влияющих, по мнению аналитика, на изменение прогнозируемого показателя (у), и строится чаще всего линейная регрессионная зависимость типа

Наличие пространственно-временной совокупности. Данная ситуация имеет место в том случае, когда: (а) длина ряда динамики недостаточна для построения статистически значимых прогнозов; (б) аналитик имеет намерение учесть в прогнозе влияние факторов, различающихся по экономической природе, и их динамики. Исходными данными служат матрицы показателей, каждая из которых представляет собой значения тех же показателей за разные периоды или на разные последовательные даты. Методы обработки таких совокупностей описаны в отечественной литературе и включают, в частности, осреднение параметров одногодичных уравнений регрессии, метод заводолет, ковариационный анализ и т. д. (см.: [Крастинь]).

 

EOD; } ?>

 

Рейтинг@Mail.ru