|
|
|
|
|
§ 4. Задачи на построение Задачи к § 4. Задачи на построение143.
144. Отрезки АВ и CD — диаметры окружности. Докажите, что: а) хорды BD и АС равны; б) хорды AD и ВС равны; в) ∠BAD = ∠BCD. 145. 146. й Отрезки АВ и CD — диаметры окружности с центром О. Найдите периметр треугольника AOD, если известно, что СВ = 13 см, АВ = 16 см. 147. На окружности с центром О отмечены точки А и В так, что угол АОВ — прямой. Отрезок ВС — диаметр окружности. Докажите, что хорды АВ и АС равны. 148. 149. 150. 151. 152. Дан тупой угол АОВ. Постройте луч ОХ так, чтобы углы ХОА и ХОВ были равными тупыми углами. 153. Решение Построим окружность с центром в данной точке М, пересекающую данную прямую а в двух точках, которые обозначим буквами А и В (рис. 91). Затем построим две окружности с центрами А и В, проходящие через точку М. Эти окружности пересекаются в точке М и ещё в одной точке, которую обозначим буквой N. Проведём прямую MN и докажем, что эта прямая — искомая, т. е. она перпендикулярна к прямой а.
В самом деле, треугольники AMN и BMN равны по трём сторонам, поэтому ∠1 = ∠2. Отсюда следует, что отрезок МС (С — точка пересечения прямых а и MN) является биссектрисой равнобедренного треугольника АМВ, а значит, и высотой. Таким образом, MN ⊥ АВ, т. е. MN ⊥ а. 154. Ответы к задачам § 4. Задачи на построение145. 90°. 146. 29 см. 149. Нет. 150. Нет. 152. Указание. Сначала построить биссектрису угла АОВ.
|
|
|