Главная >> Информатика 8 класс. Босова

§ 1.3. Элементы алгебры логики

1.3.1. Высказывание (окончание)

Побудительные и вопросительные предложения высказываниями не являются.

Например, не являются высказываниями такие предложения, как: «Запишите домашнее задание», «Как пройти в библиотеку?», «Кто к нам пришёл?».

Высказывания могут строиться с использованием знаков различных формальных языков — математики, физики, химии и т. п.

Примерами высказываний могут служить:

    1) «Na — металл» (истинное высказывание);

    2) «Второй закон Ньютона выражается формулой
    F = m • a» (истинное высказывание);

    3) «Периметр прямоугольника с длинами сторон а и b равен
    а • b» (ложное высказывание).

Не являются высказываниями числовые выражения, но из двух числовых выражений можно составить высказывание, соединив их знаками равенства или неравенства. Например:

    1) «3 + 5 = 2 4» (истинное высказывание);

    2) «II + VI > VIII» (ложное высказывание).

Не являются высказываниями и равенства или неравенства, содержащие переменные. Например, предложение «X < 12» становится высказыванием только при замене переменной каким-либо конкретным значением: «5 < 12» — истинное высказывание; «12 < 12» — ложное высказывание.

Обоснование истинности или ложности высказываний решается теми науками, к сфере которых они относятся. Алгебра логики отвлекается от смысловой содержательности высказываний. Её интересует только то, истинно или ложно данное высказывание. В алгебре логики высказывания обозначают буквами и называют логическими переменными. При этом если высказывание истинно, то значение соответствующей ему логической переменной обозначают единицей (А = 1), а если ложно — нулём (В = 0). 0 и 1, обозначающие значения логических переменных, называются логическими значениями.

Алгебра логики определяет правила записи, вычисления значений, упрощения и преобразования высказываний.

<<< К началу

 

 

???????@Mail.ru