Главная >> Информатика 8 класс. Босова

§ 1.3. Элементы алгебры логики

1.3.2. Логические операции (продолжение)

Дизъюнкция. Инверсия

Рассмотрим два высказывания: А = «Идея использования в логике математической символики принадлежит Готфриду Вильгельму Лейбницу», В = «Лейбниц является основоположником бинарной арифметики». Очевидно, новое высказывание «Идея использова ния в логике математической символики принадлежит Готфриду Вильгельму Лейбницу или Лейбниц является основоположником бинарной арифметики» ложно только в том случае, когда одновременно ложны оба исходных высказывания.

Самостоятельно установите истинность или ложность трёх рассмотренных выше высказываний.

Дизъюнкция — логическая операция, которая каждым двум высказываниям ставит в соответствие новое высказывание, являющееся ложным тогда и только тогда, когда оба исходных высказывания ложны.

Для записи дизъюнкции используются следующие знаки: ИЛИ, ∨, |, +. Например: А ИЛИ В, A∨B, А|В, А+В.

Дизъюнкция определяется следующей таблицей истинности:

Дизъюнкцию также называют логическим сложением. Подумайте почему.

Инверсия

Инверсия — логическая операция, которая каждому высказыванию ставит в соответствие новое высказывание, значение которого противоположно исходному.

Для записи инверсии используются следующие знаки: НЕ, ¬, . Например: НЕ А, ¬ А,

Инверсия определяется следующей таблицей истинности:

Инверсию также называют логическим отрицанием.

Отрицанием высказывания «У меня дома есть компьютер» будет высказывание «Неверно, что у меня дома есть компьютер» или, что в русском языке то же самое, «У меня дома нет компьютера». Отрицанием высказывания «Я не знаю китайский язык» будет высказывание «Неверно, что я не знаю китайский язык» или, что в русском языке одно и то же, «Я знаю китайский язык». Отрицанием высказывания «Все юноши 8-х классов — отличники» является высказывание «Неверно, что все юноши 8-х классов — отличники», другими словами, «Не все юноши 8-х классов — отличники».

Таким образом, при построении отрицания к простому высказыванию либо используется речевой оборот «неверно, что ...», либо отрицание строится к сказуемому, тогда к соответствующему глаголу добавляется частица «не».

Любое сложное высказывание можно записать в виде логического выражения — выражения, содержащего логические переменные, знаки логических операций и скобки. Логические операции в логическом выражении выполняются в следующей очерёдности: инверсия, конъюнкция, дизъюнкция. Изменить порядок выполнения операций можно с помощью расстановки скобок.

Логические операции при выполнении имеют следующий приоритет: ин версия, конъюнкция, дизъюнкция.

<<< К началу          Окончание >>>

 

 

???????@Mail.ru