|
|
|
Электродинамика
Роль электромагнитных сил в природе и технике (окончание)Электромагнитные взаимодействияВсе остальные силы, проявляющиеся в природе и используемые в технике, имеют электромагнитную природу. В повседневной жизни, за исключением притяжения к Земле и приливов, мы встречаемся в основном только с различными проявлениями электромагнитных сил. В частности, упругая сила пара имеет электромагнитную природу. Поэтому смена «века пара» «веком электричества» означала лишь смену эпохи, когда мы не умели управлять электромагнитными силами, эпохой, когда мы научились распоряжаться ими по своему усмотрению. Трудно даже перечислить все проявления электромагнитных сил. Они определяют устойчивость атомов, объединяют атомы в молекулы, обусловливают взаимодействие между атомами и молекулами, приводящее к образованию конденсированных (жидких и твердых) сред. Все виды сил упругости и трения имеют электромагнитную природу; силы мышц и вся жизнедеятельность нашего организма и организмов животных основаны на электромагнитных взаимодействиях. То же самое относится и ко всем растениям. Велика роль электрических сил в ядре атома. В атомном реакторе и при взрыве атомной бомбы именно эти силы разгоняют осколки ядер и приводят к выделению огромной энергии. Наконец, взаимодействие между телами осуществляется посредством электромагнитных волн: свет, радиоволны, тепловое излучение и др. Электромагнитные силы не универсальны. Они действуют лишь между электрически заряженными частицами. В чем же тогда состоит причина такой необычайно широкой сферы действия электромагнитных сил? Почему именно они определяют структуру материи и физические процессы в огромной области пространственных масштабов — от 10-13 до 107 см (на меньших расстояниях определяющими становятся ядерные взаимодействия, а на больших нужно учитывать и гравитационные силы)? Главная причина состоит в том, что вещество построено из электрически заряженных частиц — электронов и атомных ядер. Причем имеются заряды двух знаков: положительные и отрицательные, что обеспечивает существование как сил притяжения, так и сил отталкивания. И эти силы очень велики по сравнению с гравитационными. Электромагнитные силы медленно, как , убывают с расстоянием, подобно гравитационным силам. Но заряженные частицы образуют нейтральные системы — атомы и молекулы, силы взаимодействия между которыми проявляются лишь на очень малых расстояниях. Существен еще сложный характер электромагнитных взаимодействий: они зависят не только от расстояний между заряженными частицами, но и от их скоростей и даже ускорений. Роль электродинамики в техникеК созданию электродинамики привела длинная цепь планомерных исследований и случайных открытий, начиная с обнаружения способности янтаря, потертого о шерсть, притягивать легкие предметы и кончая гипотезой Максвелла о порождении магнитного поля переменным электрическим полем. Лишь во второй половине XIX в., после создания Максвеллом классической электродинамики, началось широкое практическое использование электромагнитных явлений. Изобретение радио А. С. Поповым и Г. Маркони — одно из важнейших применений принципов новой теории. При развитии электродинамики впервые в истории человечества научные исследования предшествовали техническим применениям. Если паровая машина была построена задолго до создания термодинамики, то сконструировать электродвигатель или осуществить радиосвязь оказалось возможным только после открытия и изучения законов электродинамики. Бесчисленные практические применения электромагнитных явлений преобразовали жизнь людей на земном шаре. Человечество создало вокруг себя некую новую «электрическую среду» со штепсельной розеткой на каждой стенке. Широкое применение электродинамики связано с тем, что электрическую энергию легко передавать по проводам на большие расстояния и, главное, с помощью сравнительно несложных устройств преобразовывать в другие энергии: механическую, внутреннюю, энергию излучения и т. д. Законы электродинамики лежат в основе всей электротехники и радиотехники, включая телевидение, видеозапись и почти все средства связи. Электродинамика составляет фундамент таких актуальных направлений современной физики, как физика плазмы и проблема управляемых термоядерных реакций, нелинейная оптика, магнитная гидродинамика, астрофизика, конструирование вычислительных машин, ускорителей элементарных частиц и т. д. Границы применимости классической электродинамикиКак и любая другая физическая теория, классическая электродинамика Максвелла не является абсолютно точной. Она имеет определенные границы применимости.
Создание теории относительности не внесло каких-либо принципиальных изменений в электродинамику Максвелла. Напротив, именно развитие электродинамики привело в начале XX в. к созданию теории относительности. Дело в том, что электромагнитные процессы связаны с большими скоростями распространения взаимодействий. Теория Максвелла, описывающая эти взаимодействия, применима для процессов, протекающих с любыми скоростями, меньшими скорости света. Границы применимости классической электродинамики устанавливаются квантовой теорией. Классическая электродинамика успешно описывает поведение электромагнитного поля при достаточно малых частотах колебаний этого поля. Чем больше частота колебаний, тем отчетливее обнаруживаются квантовые (корпускулярные) свойства электромагнитного поля. Подробнее этот вопрос мы обсудим в дальнейшем. Область применимости классической электродинамики очень велика. И в рамках этой области человечество всегда будет пользоваться теорией Максвелла. По мнению американского физика Р. Фейнмана, «в истории человечества (если посмотреть на нее, скажем, через десять тысяч лет) самым значительным событием XIX столетия, несомненно, будет открытие Максвеллом законов электродинамики. На фоне этого великого открытия гражданская война в Америке в том же десятилетии будет выглядеть мелким провинциальным происшествием». Наша задача в дальнейшем будет состоять в изучении основных законов электромагнитных взаимодействий, а также в знакомстве со способами получения электрической энергии и использованием ее на практике.
|
|
|