|
|
|
Введение
Физика и познание мира (окончание)ТеорияИзучая количественные связи между отдельными величинами, можно выявить частные закономерности. На основе таких закономерностей развивают теорию явлений. Теория должна объяснять частные закономерности с общей точки зрения. Теория позволяет не только объяснять уже наблюдавшиеся явления, но и предсказывать новые. Так, например Д. И. Менделеев на основе открытого им периодического закона предсказал существование нескольких химических элементов, которые в то время не были известны, а английский физик Дж. Максвелл предсказал существование электромагнитных волн. Если между теорией и экспериментом появляется несоответствие, то теорию надо изменить, чтобы можно было объяснить все новые полученные данные, т. е. теорию надо усовершенствовать. Практически всякая известная теория является результатом последовательных уточнений. Физический законЧтобы из наблюдений за физическими явлениями сделать общие выводы, найти причины этих явлений, следует установить количественные зависимости между различными физическими величинами. Проводя физический эксперимент, стремятся проследить зависимость данной величины от характера изменения каждого из условий в отдельности, Например, давление газа зависит от его массы, объёма и температуры. Чтобы исследовать эту зависимость, надо сначала изучить, как влияет на давление изменение объёма, когда температура и масса остаются неизменными. Затем нужно проследить, как давление зависит от температуры при постоянном объёме, и т. д. Таким образом, в процессе исследований учёные получают научные факты.
Физические законы обычно выражаются в виде короткого словесного утверждения или компактной математической формулы, связывающей между собой определённые физические величины. Английский физик-теоретик П. Дирак сказал: «Физический закон должен обладать математической красотой». Границы применимости физических законовТеория, проверенная и подтверждённая многочисленными экспериментами, может рассматриваться как физический закон. Однако у каждого закона есть границы применимости. Эти границы прежде всего определяются той теоретической моделью, в рамках которой мы рассматриваем данный закон. Все законы, которым подчиняется реальный газ, выведенные на основе модели идеального газа, справедливы только для тех условий, при которых свойства реального газа приближены к свойствам идеального газа. Так, мы уже знаем закон Ома: сила тока на участке цепи прямо пропорциональна приложенному к нему напряжению и обратно пропорциональна сопротивлению этого участка: Однако этот закон справедлив не для всех проводников. Например, он неприменим для ионизованного газа. Кроме того, им можно пользоваться только в определённом интервале значений силы тока, в котором можно считать сопротивление постоянным. На самом деле при прохождении тока проводник нагревается, сопротивление проводника увеличивается, и сила тока будет отличаться от расчётной. Открытия в физикеФизика продолжает бурно развиваться. Каждый новый эксперимент позволяет усовершенствовать теорию. Между теорией и экспериментом существует неразрывная связь, непрерывное взаимодействие. Необходимо помнить, что любая физическая теория основывается на определённой модели объектов и явлений. В процессе добывания новых научных фактов любая физическая модель совершенствуется и усложняется. Однако очевидно, что окружающий нас мир гораздо сложнее, многообразней и совершенней любой самой сложной, созданной человеческим умом модели. Поэтому завершённость какой-либо физической теории отнюдь не означает полного познания законов природы. В настоящее время учёные получают в лабораториях новые материалы и исследуют их свойства. Так, в 2010 году была присуждена Нобелевская премия по физике А. Гейму и К. Новосёлову за открытие графена, который обладает сверхпрочными свойствами и наибольшей электропроводностью из существующих материалов. Учёные решают глобальные вопросы: открытие новых элементарных частиц, новых физических законов, новых видов энергии. Разрабатывают теории, подтверждение которых требует создания очень сложных установок, таких, как, например, Большой адронный коллайдер в ЦЕРНе. Длина его основного кольца около 27 км. Создание таких установок требует огромных затрат и сложной подготовки. Однако часто случается так, что теории долго не находят экспериментального подтверждения. Так, например, ещё не обнаружены кварки, хотя считается, что все элементарные частицы состоят из них, и создана стройная теория кварков. Так что сегодня нет никаких оснований считать, что раскрыты почти все законы природы и мы находимся у границ познания. Поле для деятельности будущих учёных практически не имеет границ.
Темы докладов на дополнительных занятиях, которые могут быть проведены в виде «Круглых столов», интернет-конференций и т. п.;«Что мы знаем о физике» 1. Известные нам физические величины. 2. Физические явления — примеры и попытки объяснения. 3. Физические модели. Компьютерное моделирование физических явлений. 4. Использование моделей в других науках, например в биологии, химии и географии. 5. Истории открытий некоторых физических законов.
|
|
|