Главная >> Физика 10 класс. Мякишев

Глава 9. Молекулярно-кинетическая теория идеального газа

Измерение скоростей молекул газа

Как вы думаете, почему проволочка сделана из платины?

По проволочке пропускают электрический ток. В стенке этого цилиндра имеется узкая щель О. Воздух из цилиндров откачан. Цилиндр В находится при комнатной температуре. Вначале прибор неподвижен. При прохождении тока по нити она нагревается и при температуре 1200 °С атомы серебра испаряются. Внутренний цилиндр заполняется газом из атомов серебра. Некоторые атомы пролетают через щель О и, достигнув внутренней поверхности цилиндра В, осаждаются на ней. В результате прямо против щели образуется узкая полоска D серебра (рис. 9.7, б).

Затем цилиндры приводят во вращение с большим числом оборотов n в секунду (до 1500 1/c).

Теперь за время t, необходимое атому для прохождения пути, равного разности радиусов цилиндров RB - RА, цилиндры повернутся на некоторый угол φ. В результате атомы, движущиеся с постоянной скоростью, попадают на внутреннюю поверхность большого цилиндра не прямо против щели О (рис. 9.7, в), а на некотором расстоянии s от конца радиуса, проходящего через середину щели (рис. 9.7, г): ведь атомы движутся прямолинейно.

Если через υB обозначить модуль скорости вращения точек поверхности внешнего цилиндра, то

    s = υBt = 2 πnRBt.                     (9.20)

В действительности атомы серебра имеют разные скорости. Поэтому расстояния s для различных атомов будут несколько различаться. Под s следует понимать расстояние между участками на полосках D и D' с наибольшей толщиной слоя серебра. Этому расстоянию будет соответствовать средняя скорость атомов, которая равна

Подставляя в эту формулу значение времени t из выражения (9.20), получаем

    Средняя скорость атомов

Обсудите с товарищем, почему скорость вращения цилиндров должна быть большой.

Зная n, RA и RB и измеряя среднее смещение полоски серебра, вызванное вращением прибора, можно найти среднюю скорость атомов серебра.

Модули скоростей, определённые из опыта, совпадают с теоретическим значением средней квадратичной скорости. Это служит экспериментальным доказательством справедливости формулы (9.19), а следовательно, и формулы (9.16), согласно которой средняя кинетическая энергия молекулы прямо пропорциональна абсолютной температуре.

Ключевые слова для поиска информации по теме параграфа.
Средняя квадратичная скорость молекул. Опыт Штерна

<<< К началу      Окончание >>>

 

 

???????@Mail.ru