Главная >> Астрономия 11 класс. Воронцов-Вельяминов

§ 24. Переменные и нестационарные звёзды

2. Новые и сверхновые звёзды

Начиная с глубокой древности, в исторических летописях разных народов неоднократно отмечены случаи появления звёзд, видимых невооружённым глазом на том месте, где их прежде не было. Особенно удивительными были эти «новые» звёзды, когда они становились столь яркими, что могли наблюдаться даже днём. Затем их свет постепенно, в течение нескольких месяцев ослабевал настолько, что звезду уже нельзя было видеть невооружённым глазом. Например, в китайских и японских хрониках сохранились сведения о «звезде-гостье», которая вспыхнула в созвездии Тельца в 1054 г. и в течение трех недель была видна днем, а через год совершенно «исчезла». В 1572 г. учитель Кеплера Тихо Браге наблюдал в созвездии Кассиопеи новую звезду, которая была ярче Венеры. В 1604 г. уже сам Кеплер наблюдал новую звезду в созвездии Змееносца.

В XX в. тщательные наблюдения за звёздным небом с применением фотографии позволили установить, что такие неожиданные вспышки наблюдаются у звёзд, которые до этого долгое время оставались слабыми и не привлекали к себе внимание астрономов. В настоящее время различают новые и сверхновые вспыхивающие звёзды. У новых звёзд светимость возрастает на 12—13 звёздных величин и выделяется энергия до 1039 Дж. Звезда приобретает максимальную яркость всего за несколько суток, а ослабление до первоначального значения светимости может длиться годами (рис. 5.27). Долгое время причины вспышек новых звезд оставались непонятными. Положение изменилось, когда в 1954 г. было обнаружено, что одна из новых звёзд (DQ Геркулеса) является двойной с периодом обращения всего 4 ч 39 мин. Один из компонентов — белый карлик, а другой — красная звезда главной последовательности. Из-за их близкого расположения на белый карлик перетекает газ из атмосферы красного карлика. По мере накопления водорода плотность и температура внешних слоёв белого карлика возрастает, создаются условия для начала термоядерных реакций превращения водорода в гелий. Они происходят настолько быстро, что приобретают характер взрыва. При этом внешние слои звезды, составляющие небольшую часть её массы, расширяются и выбрасываются в космическое пространство. Их свечение и наблюдается как вспышка новой звезды. Такое явление может повторяться с тесными двойными звёздами неоднократно: у одних через тысячи, у других с изменением светимости на 4—5 звёздных величин через несколько десятков лет.

Но в некоторых случаях такой процесс может привести к катастрофе. Если при перетекании вещества масса белого карлика превысит предельную (примерно 1,4 массы Солнца), то происходит взрыв. Термоядерные реакции превращения углерода и кислорода в железо и никель, которые идут с огромной скоростью, могут полностью разрушить звезду. Происходит вспышка сверхновой.

Вспышка сверхновой звезды — гигантский по своим масштабам взрыв звезды, при котором её светимость в течение нескольких суток возрастает в сотни миллионов раз. При вспышке выделяется энергия порядка 1046 Дж, что примерно равно энергии, которую Солнце может излучить за всё время своего существования.

Другие сверхновые звёзды (их ещё называют сверхновыми II типа) представляли собой массивные звёзды на поздних этапах своей эволюции. Теоретические расчеты, результаты которых хорошо согласуются с наблюдательными данными, позволили составить достаточно полное представление о процессах, происходящих в тех сверхновых звёздах, масса которых в десятки раз превосходит массу Солнца. К моменту вспышки в них полностью исчерпаны возможности протекания термоядерных реакций. Эволюция таких массивных звёзд — это непрерывно ускоряющийся процесс увеличения температуры и плотности в ядре звезды.

На протяжении большей части жизни любой звезды основным источником её энергии служит термоядерный синтез гелия из водорода. В звёздах с большой массой эта стадия длится несколько миллионов лет. Когда запасы водорода в звёздном ядре истощаются, оно сжимается и разогревается настолько, что из гелия начинает синтезироваться углерод. Эта стадия занимает около 500 тыс. лет. Затем во всё более нарастающем темпе последовательно проходят реакции синтеза, в которых участвуют углерод (600 лет), неон (1 год), кислород (6 месяцев) и, наконец, кремний. На последней стадии, которая длится всего сутки, из кремния синтезируется железо. Ядро железа связано сильнее других ядер, поэтому дальнейший синтез становится невозможным, поскольку при этом энергия должна была бы не выделяться, а поглощаться. Лишённое источников энергии ядро не может противостоять гравитационным силам и коллапсирует (катастрофически сжимается) за несколько миллисекунд. На конечной стадии коллапса центральная часть ядра звезды сжимается до плотности ядерного вещества.

Окончание >>>

 

 

???????@Mail.ru