|
|
|
Статистический анализ экспериментальных данных и способы наглядного представления результатов
Методы вторичной статистической обработки результатов эксперимента (продолжение)Подставим все эти значения в формулу для %% и определим его величину:
Воспользуемся теперь таблицей 33, где для заданного числа степеней свободы можно выяснить степень значимости образовавшихся различий до и после эксперимента в распределении оценок. Полученное нами значение х2 = 21,5 больше соответствующего табличного значения m - 1 = 2 степеней свободы, составляющего 13,82 при вероятности допустимой ошибки меньше чем 0,001. Следовательно, гипотеза о значимых изменениях, которые произошли в оценках учащихся в результате введения новой программы или новой методики обучения, экспериментально подтвердилась: успеваемость значительно улучшилась, и это мы можем утверждать, допуская ошибку, не превышающую 0,001%.
Иногда в психолого-педагогическом эксперименте возникает необходимость сравнить дисперсии двух выборок для того, чтобы решить, различаются ли эти дисперсии между собой. Допустим, что проводится эксперимент, в котором проверяется гипотеза о том, что одна из двух предлагаемых программ или методик обучения обеспечивает одинаково успешное усвоение знаний учащимися с разными способностями, а другая программа или методика этим свойством не обладает. Демонстрацией справедливости такой гипотезы было бы доказательство того, что индивидуальный разброс оценок учащихся по одной программе или методике больше (или меньше), чем индивидуальный разброс оценок по другой программе или методике. Подобного рода задачи решаются, в частности, при помощи критерия Фишера. Его формула выглядит следующим образом:
где n1 — количество значения признака в первой из сравниваемых выборок; n2 — количество значений признака во второй из сравниваемых выборок; (п1 — 1, п2 — 1) — число степеней свободы; S1 — дисперсия по первой выборке; S2 — дисперсия по второй выборке. Вычисленное с помощью этой формулы значение F-критерия сравнивается с табличным (табл. 34), и если оно превосходит табличное для избранной вероятности допустимой ошибки и заданного числа степеней свободы, то делается вывод о том, что гипотеза о различиях в дисперсиях подтверждается. В противоположном случае такая гипотеза отвергается и дисперсии считаются одинаковыми2. 2 Если отношение выборочных дисперсий в формуле F-критерия оказывается меньше единицы, то числитель и знаменатель в этой формуле меняют местами и вновь определяют значения критерия.
П р и м е ч а н и е. Таблица для граничных значений распределения приведена в сокращенном виде. Полностью ее можно найти в справочниках по математической статистике, в частности в тех, которые даны в списке дополнительной литературы к этой главе. П р и м е р. Сравним дисперсии следующих двух рядов цифр с целью определения статистически достоверных различий между ними. Первый ряд: 4,6, 5,7,3,4,5,6. Второй ряд: 2,7, 3,6,1,8, 4, 5. Средние значения для двух этих рядов соответственно равны: 5,0 и 4,5. Их дисперсии составляют: 1,5 и 5,25. Частное от деления большей дисперсии на меньшую равно 3,5. Это и есть искомый показатель F. Сравнивая его с табличным граничным значением 3,44, приходим к выводу о том, что дисперсии двух сопоставляемых выборок действительно отличаются друг от друга на уровне значимости более 95% или с вероятностью допустимой ошибки не более 0,05%. Следующий метод вторичной статистической обработки, посредством которого выясняется связь или прямая зависимость между двумя рядами экспериментальных данных, носит название метод корреляций. Он показывает, каким образом одно явление влияет на другое или связано с ним в своей динамике. Подобного рода зависимости существуют, к примеру, между величинами, находящимися в причинно-следственных связях друг с другом. Если выясняется, что два явления статистически достоверно коррелируют друг с другом и если при этом есть уверенность в том, что одно из них может выступать в качестве причины другого явления, то отсюда определенно следует вывод о наличии между ними причинно-следственной зависимости. Имеется несколько разновидностей данного метода: линейный, ранговый, парный и множественный. Линейный корреляционный анализ позволяет устанавливать прямые связи между переменными величинами по их абсолютным значениям. Эти связи графически выражаются прямой линией, отсюда название «линейный». Ранговая корреляция определяет зависимость не между абсолютными значениями переменных, а между порядковыми местами, или рангами, занимаемыми ими в упорядоченном по величине ряду. Парный корреляционный анализ включает изучение корреляционных зависимостей только между парами переменных, а множественный, или многомерный, — между многими переменными одновременно. Распространенной в прикладной статистике формой многомерного корреляционного анализа является факторный анализ. На рис. 74 в виде множества точек представлены различные виды зависимостей между двумя переменными X и Y (различные поля корреляций между ними). На фрагменте рис. 74, отмеченном буквой А, точки случайным образом разбросаны по координатной плоскости. Здесь по величине X нельзя делать какие-либо определенные выводы о величине У. Если в данном случае подсчитать коэффициент корреляции, то он будет равен 0, что свидетельствует о том, что достоверная связь между X и У отсутствует (она может отсутствовать и тогда, когда коэффициент корреляции не равен 0, но близок к нему по величине). На фрагменте Б рисунка все точки лежат на одной прямой, и каждому отдельному значению переменной X можно поставить в соответствие одно и только одно значение переменной У, причем, чем большее, тем больше Y. Такая связь между переменными X и У называется прямой, и если это прямая, соответствующая уравнению регрессии, то связанный с ней коэффициент корреляции будет равен +1. (Заметим, что в жизни такие случаи практически не встречаются; коэффициент корреляции почти никогда не достигает величины единицы.) На фрагменте В рисунка коэффициент корреляции также будет равен единице, но с отрицательным знаком: -1. Это означает обратную зависимость между переменными X и У, т.е., чем больше одна из них, тем меньше другая. На фрагменте Г рисунка точки также разбросаны не случайно, они имеют тенденцию группироваться в определенном направлении. Это направление приближенно может быть представлено уравнением прямой регрессии. Такая же особенность, но с противоположным знаком, характерна для фрагмента Д. Соответствующие этим двум фрагментам коэффициенты корреляции приблизительно будут равны +0,50 и -0,30. Заметим, что крутизна графика, или линии регрессии, не оказывает влияния на величину коэффициента корреляции.
Наконец, фрагмент Е дает коэффициент корреляции, равный или близкий к 0, так как в данном случае связь между переменными хотя и существует, но не является линейной. Коэффициент линейной корреляции определяется при помощи следующей формулы:
П р и м е р. Определим коэффициент линейной корреляции между следующими двумя рядами показателей. Ряд 1: 2, 4, 4, 5, 3, 6, 8. Ряд II: 2, 5, 4, 6, 2, 5, 7. Средние значения этих двух рядов соответственно равны 4,6 и 4,4. Их дисперсии составляют следующие величины: 3,4 и 3,1. Подставив эти данные в приведенную выше формулу коэффициента линейной корреляции, получим следующий результат: 0,92. Следовательно, между рядами данных существует значимая связь, причем довольно явно выраженная, так как коэффициент корреляции близок к единице. Действительно, взглянув на эти ряды цифр, мы обнаруживаем, что большей цифре в одном ряду соответствует большая цифра в другом ряду и, наоборот, меньшей цифре в одном ряду соответствует примерно такая же малая цифра в другом ряду. К коэффициенту ранговой корреляции в психолого-педагогических исследованиях обращаются в том случае, когда признаки, между которыми устанавливается зависимость, являются качественно различными и не могут быть достаточно точно оценены при помощи так называемой интервальной измерительной шкалы. Интервальной называют такую шкалу, которая позволяет оценивать расстояния между ее значениями и судить о том, какое из них больше и насколько больше другого. Например, линейка, с помощью которой оцениваются и сравниваются длины объектов, является интервальной шкалой, так как, пользуясь ею, мы можем утверждать, что расстояние между двумя и шестью сантиметрами в два раза больше, чем расстояние между шестью и восемью сантиметрами. Если же, пользуясь некоторым измерительным инструментом, мы можем только утверждать, что одни показатели больше других, но не в состоянии сказать на сколько, то такой измерительный инструмент называется не интервальным, а порядковым.
|
|
|