Главная >> Физика 10 класс. Мякишев

Глава 6. Динамика вращательного движения абсолютно твёрдого тела

§ 48. Основное уравнение динамики вращательного движения

    Повторите основные понятия и соотношения кинематики вращательного движения абсолютно твёрдого тела, изложенные в § 16 главы 1.

Угловое ускорение

Ранее мы получили формулу, связывающую линейную скорость υ, угловую скорость ω и радиус R окружности, по которой движется выбранный элемент (материальная точка) абсолютно твёрдого тела, которое, вращается относительно неподвижной оси:

υ = ωR.

Мы знаем, что линейные скорости и ускорения точек твёрдого тела различны. В то же время угловая скорость всех точек твёрдого тела одинакова.

Угловая скорость — векторная величина. Направление угловой скорости определяется по правилу буравчика. Если направление вращения ручки буравчика совпадает с направлением вращения тела, то поступательное движение буравчика указывает направление вектора угловой скорости (рис. 6.1).

    поступательное движение буравчика указывает направление вектора угловой скорости

Однако равномерное вращательное движение встречается довольно редко. Гораздо чаще мы имеем дело с движением, при котором угловая скорость изменяется, очевидно, это происходит в начале и конце движения.

Причиной изменения угловой скорости вращения является действие на тело сил. Изменение угловой скорости со временем определяет угловое ускорение.

Bектор угловой скорости — это скользящий вектор. Независимо от точки приложения его направление указывает направление вращения тела, а модуль определяет быстроту вращения,

Важно
Среднее угловое ускорение равно отношению изменения угловой скорости к промежутку времени, за которое это изменение произошло:

При равноускоренном движении угловое ускорение постоянно и при неподвижной оси вращения характеризует изменение угловой скорости по модулю. При увеличении угловой скорости вращения тела угловое ускорение направлено в ту же сторону, что и угловая скорость (рис. 6.2, а), а при уменьшении — в противоположную (рис. 6.2, б).

    При увеличении угловой скорости вращения тела угловое ускорение направлено в ту же сторону, что и угловая скорость

Так как угловая скорость связана с линейной скоростью соотношением υ = ωR, то изменение линейной скорости за некоторый промежуток времени Δt равно Δυ =ΔωR. Разделив левую и правую части уравнения на Δt, имеем или а = εR, где а — касательное (линейное) ускорение, направленное по касательной к траектории движения (окружности).

Если время измерено в секундах, а угловая скорость — в радианах в секунду, то одна единица углового ускорения равна 1 рад/с2 , т. е. угловое ускорение выражается в радианах на секунду в квадрате.

Чем различаются два вектора — вектор линейной скорости и вектор угловой скорости.

Неравномерно движутся при запуске и остановке любые вращающиеся тела, например ротор в электродвигателе, диск токарного станка, колесо автомобиля при разгоне и др.

Обсудите с товарищем, может ли угловая скорость вращения не изменяться, если на тело действуют силы.

Продолжение >>>

 

 

???????@Mail.ru