|
|
|
Глава 9. Молекулярно-кинетическая теория идеального газа
§ 60. Определение температуры. Энергия теплового движения молекулКакие макропараметры используют для описания состояния газа? Справедливо ли утверждение: «Чем быстрее движутся молекулы газа, тем выше его температура»? Средняя кинетическая энергия молекул газа при тепловом равновесииВозьмём сосуд, разделённый пополам перегородкой, проводящей тепло. В одну половину сосуда поместим кислород, а в другую — водород, имеющие разную температуру. Спустя некоторое время газы будут иметь одинаковую температуру, не зависящую от рода газа, т. е. будут находиться в состоянии теплового равновесия. Для определения температуры выясним, какая физическая величина в молекулярно-кинетической теории обладает таким же свойством. Из курса физики основной школы известно, что, чем быстрее движутся молекулы, тем выше температура тела. При нагревании газа в замкнутом сосуде давление газа возрастает. Согласно же основному уравнению молекулярно-кинетической теории (9.7) давление газа р прямо пропорционально средней кинетической энергии поступательного движения молекул: Так как концентрация молекул газа то из уравнения (9.7) получаем или или, согласно формуле (8.8), При тепловом равновесии, если давление и объём газа массой m постоянны и известны, то средняя кинетическая энергия молекул газа должна иметь строго определённое значение, как и температура. Можно предположить, что
Конечно, это пока только предположение. Его нужно экспериментально проверить. Практически такую проверку произвести непосредственно невозможно, так как измерить среднюю кинетическую энергию молекул очень трудно. Но с помощью основного уравнения молекулярно-кинетической теории её можно выразить через макроскопические параметры:
Если кинетическая энергия действительно одинакова для всех газов в состоянии теплового равновесия, то и значение давления р должно быть тоже одинаково для всех газов при Газы в состоянии теплового равновесияРассмотрим следующий опыт. Возьмём несколько сосудов, заполненных различными газами, например водородом, гелием и кислородом. Сосуды имеют определённые объёмы и снабжены манометрами. Это позволяет измерить давление в каждом сосуде. Массы газов известны, тем самым известно число молекул в каждом сосуде.
Приведём газы в состояние теплового равновесия. Для этого поместим их в тающий лёд и подождём, пока не установится тепловое равновесие и давление газов перестанет меняться (рис. 9.4). После этого можно утверждать, что все газы имеют одинаковую температуру 0 °С. Давления газов р, их объёмы V и число молекул N различны. Найдём отношение для водорода. Если, к примеру, водород, количество вещества которого равно 1 моль, занимает объём VH2 = 0,1 м3 , то при температуре 0 °С давление оказывается равным рН2 = 2,265 • 104 Па. Отсюда
Если взять водород в объёме, равном kVH2, то и число молекул будет равно kNA и отношение останется равным 3,76 • 10-21 Дж. Такое же значение отношения произведения давления газа на его объём к числу молекул получается и для всех других газов при температуре тающего льда. Обозначим это отношение через Θ0. Тогда
Таким образом, наше предположение оказалось верным.
Если же сосуды с газами поместить в кипящую воду при нормальном атмосферном давлении, то согласно эксперименту отношение по-прежнему будет одним и тем же для всех газов, но больше, чем предыдущее:
Отметим важнейший факт: абсолютный нуль температуры недостижим!
|
|
|