Главная >> Физика 10 класс. Мякишев

Глава 16. Электрический ток в различных средах

§ 108. Электрическая проводимость различных веществ. Электронная проводимость металлов

В этой главе вы познакомитесь с физическими процессами, обусловливающими прохождение тока в различных средах.

    Как движутся электроны в металлическом проводнике, когда в нём нет электрического поля?

    Как изменяется движение электронов, когда к металлическому проводнику прикладывают напряжение?

Электрический ток проводят твёрдые, жидкие и газообразные тела. Чем эти проводники отличаются друг от друга?

Мы познакомились с электрическим током в металлических проводниках и с установленной экспериментально вольт-амперной характеристикой этих проводников — законом Ома.

Наряду с металлами хорошими проводниками, т. е. веществами с большим количеством свободных заряженных частиц, являются водные растворы или расплавы электролитов и ионизованный газ — плазма. Эти проводники широко используются в технике.

В вакуумных электронных приборах электрический ток образуют потоки электронов.

Металлические проводники находят самое широкое применение в передаче электроэнергии от источников тока к потребителям. Кроме того, эти проводники используются в электродвигателях и генераторах, электронагревательных приборах и т. д.

Кроме проводников и диэлектриков (веществ со сравнительно небольшим количеством свободных заряженных частиц), имеется группа веществ, проводимость которых занимает промежуточное положение между проводниками и диэлектриками. Эти вещества не настолько хорошо проводят электричество, чтобы их назвать проводниками, но и не настолько плохо, чтобы их отнести к диэлектрикам. Поэтому они получили название полупроводников.

Долгое время полупроводники не играли заметной практической роли. В электротехнике и радиотехнике применяли исключительно различные проводники и диэлектрики. Положение существенно изменилось, когда сначала была предсказана теоретически, а затем обнаружена и изучена легкоосуществимая возможность управления электрической проводимостью полупроводников.

Ещё раз подчеркнём, что нет универсального носителя тока. В таблице приведены носители тока в различных средах.

В таблице приведены носители тока в различных средах

Электронная проводимость металлов. Начнём с металлических проводников. Вольт-амперная характеристика этих проводников нам известна, но пока ничего не говорилось о её объяснении с точки зрения молекулярнокинетической теории.

Важно
Носителями свободных зарядов в металлах являются электроны. Их концентрация велика — порядка 10 28 1/м 3 .

Л. И. Мандельштам

Эти электроны участвуют в беспорядочном тепловом движении. Под действием электрического поля они начинают перемещаться упорядоченно со средней скоростью порядка 10-4 м/с.

Экспериментальное доказательство существования свободных электронов в металлах. Экспериментальное доказательство того, что проводимость металлов обусловлена движением свободных электронов, было дано в опытах Мандельштама и Папалекси (1913), Стюарта и Толмена (1916). Схема этих опытов такова.

На катушку наматывают проволоку, концы которой припаивают к двум металлическим дискам, изолированным друг от друга (рис. 16.1). К концам дисков при помощи скользящих контактов подключают гальванометр.

Катушку приводят в быстрое вращение, а затем резко останавливают. После резкой остановки катушки свободные заряженные частицы некоторое время движутся относительно проводника по инерции, и, следовательно, в катушке возникает электрический ток. Ток существует незначительное время, так как из-за сопротивления проводника заряженные частицы тормозятся и упорядоченное движение частиц, образующее ток, прекращается.

Направление тока в этом опыте говорит о том, что он создаётся движением отрицательно заряженных частиц. Переносимый при этом заряд пропорционален отношению заряда частиц, создающих ток, к их массе, т. е. |q|/m. Поэтому, измеряя заряд, проходящий через гальванометр за время существования тока в цепи, удалось определить это отношение. Оно оказалось равным 1,8 • 1011 Кл/кг. Эта величина совпадала с отношением заряда электрона к его массе е/m, найденным ранее из других опытов.

Движение электронов в металле. Свободные электроны в металле движутся хаотично. При подключении проводника к источнику тока в нём создаётся электрическое поле, и на электроны начинает действовать кулоновская сила = qe. Под действием этой силы электроны начинают двигаться направленно, т. е. на хаотичное движение электронов накладывается Скорость направленного движения увеличивается в течение некоторого времени t0 до тех пор, пока не произойдёт столкновение электронов с ионами кристаллической решётки. При этом электроны теряют направление движения, а затем опять начинают двигаться направленно. Таким образом, скорость направленного движения электрона изменяется от нуля до некоторого максимального значения, равного В результате средняя скорость упорядоченного движения электронов оказывается равной т. е. пропорциональной напряжённости электрического поля в проводнике: υ ~ Е и, следовательно, разности потенциалов на концах проводника, так как где l — длина проводника.

Выведите выражение для удельного сопротивления металла, используя формулу (15.2) (с. 333) и выражение для средней скорости электронов.

Важно
Сила тока в проводнике пропорциональна скорости упорядоченного движения частиц (см. формулу (15.2)). Поэтому можем сказать, что сила тока пропорциональна разности потенциалов на концах проводника: I ~ U.

В этом состоит качественное объяснение закона Ома на основе электронной теории проводимости металлов.

Построить удовлетворительную количественную теорию движения электронов в металле на основе законов классической механики невозможно. Дело в том, что условия движения электронов в металле таковы, что классическая механика Ньютона неприменима для описания этого движения. Этот факт подтверждает, например, зависимость сопротивления от температуры. Согласно классической теории металлов, в которой движение электронов рассматривается на основе второго закона Ньютона, сопротивление проводника пропорционально эксперимент же показывает линейную зависимость сопротивления от температуры.

Ключевые слова для поиска информации по теме параграфа.
Проводимость металлов. Движение электронов в металле

Вопросы к параграфу

    1. Чем отличаются проводники от полупроводников?

    2. Катушка (см. рис. 16.1) вращалась по часовой стрелке, а затем была резко заторможена. Каково направление электрического тока в катушке в момент торможения?

    3. Что определяет скорость упорядоченного движения электронов в металле?

    4. Какие частицы находятся в узлах кристаллической решётки металла?

 

 

???????@Mail.ru