|
|
|
Глава 11. Взаимные превращения жидкостей и газов
§ 68. Насыщенный парМолекулярно-кинетическая теория позволяет не только понять, почему вещество может находиться в газообразном, жидком и твёрдом состояниях, но и объяснить процесс перехода вещества из одного состояния в другое. Вспомните, что представляет собой модель идеального газа. Можно ли с помощью этой модели объяснить явление конденсации? Идеальный газ нельзя превратить в жидкость. В жидкость превращается реальный газ. Испарение и конденсация. Молекулы жидкости движутся беспорядочно. Чем выше температура жидкости, тем больше кинетическая энергия молекул. Среднее значение кинетической энергии молекул при заданной температуре имеет определённое значение. Но у каждой молекулы кинетическая энергия в данный момент времени может оказаться как меньше, так и больше средней. В какой-то момент времени кинетическая энергия отдельных молекул может стать настолько большой, что они окажутся способными вылететь из жидкости, преодолев силы притяжения остальных молекул.
При этом процессе число молекул, покидающих жидкость за определённый промежуток времени, больше числа молекул, возвращающихся в неё.
Если поток воздуха над сосудом уносит с собой образовавшиеся пары жидкости, то жидкость испаряется быстрее, так как у молекулы пара уменьшается возможность вновь вернуться в жидкость. Чем выше температура жидкости, тем большее число молекул имеет достаточную для вылета из жидкости кинетическую энергию, тем быстрее идёт испарение. При испарении жидкость покидают более быстрые молекулы, поэтому средняя кинетическая энергия молекул жидкости уменьшается.
Процесс испарения происходит со свободной поверхности жидкости. Если лишить жидкость возможности испаряться, то охлаждение её будет происходить гораздо медленнее.
Вылетевшая молекула принимает участие в беспорядочном тепловом движении газа. Беспорядочно двигаясь, она может навсегда удалиться от поверхности жидкости, находящейся в открытом сосуде, но может и вернуться снова в жидкость.
При этом процессе число молекул, возвращающихся в жидкость за определённый промежуток времени, больше числа молекул, покидающих её.
Насыщенный пар. Если сосуд с жидкостью плотно закрыть, то сначала количество жидкости уменьшится, а затем будет оставаться постоянным. При неизменной температуре система жидкость—пар придёт в состояние теплового равновесия и будет находиться в нём сколь угодно долго. Одновременно с процессом испарения происходит и конденсация, оба процесса в среднем компенсируют друг друга. В первый момент, после того как жидкость нальют в сосуд и закроют его, жидкость будет испаряться и плотность пара над ней будет увеличиваться. Однако одновременно с этим будет расти и число молекул, возвращающихся в жидкость. Чем больше плотность пара, тем большее число его молекул возвращается в жидкость. В результате в закрытом сосуде при постоянной температуре установится динамическое (подвижное) равновесие между жидкостью и паром.
Для воды при комнатной температуре это число приблизительно равно 1022 молекул за время, равное 1 с (на 1 см2 площади поверхности).
Согласно этому определению в данном объёме при данной температуре не может находиться большее количество пара. Если воздух из сосуда с жидкостью предварительно откачан, то в сосуде над поверхностью жидкости будет находиться только её насыщенный пар.
Вопросы к параграфу 1. Почему в жару собака высовывает язык? 2. Приведите примеры динамического равновесия, подобного динамическому равновесию насыщенного пара и жидкости. 3. Какой пар называется насыщенным?
|
|
|