Главная >> Физика 10 класс. Мякишев

Глава 1. Кинематика точки и твёрдого тела

§ 9. Ускорение

Как изменяются показания спидометра в начале движения и при торможении автомобиля?

Какая физическая величина характеризует изменение скорости?

Подбросьте вверх мяч и сделайте вывод об изменении его скорости.

Скорость любой точки окружности точильного круга при неизменном числе оборотов в единицу времени меняется только по направлению, оставаясь постоянной по модулю

При движении тел их скорости обычно меняются либо по модулю, либо по направлению, либо жеодновременно как по модулю, так и по направлению.

Скорость шайбы, скользящей по льду, уменьшается с течением времени до полной остановки. Если взять в руки камень и разжать пальцы, то при падении камня его скорость постепенно нарастает. Скорость любой точки окружности точильного круга при неизменном числе оборотов в единицу времени меняется только по направлению, оставаясь постоянной по модулю (рис 1.26). Если бросить камень под углом к горизонту, то его скорость будет меняться и по модулю, и по направлению.

Изменение скорости тела может происходить как очень быстро (движение пули в канале ствола при выстреле из винтовки), так и сравнительно медленно (движение поезда при его отправлении).

Запомни
Физическая величина, характеризующая быстроту изменения скорости, называется ускорением.

Рассмотрим случай криволинейного и неравномерного движения точки. В этом случае её скорость с течением времени изменяется как по модулю, так и по направлению. Пусть в некоторый момент времени t точка занимает положение М и имеет скорость (рис. 1.27). Спустя промежуток времени Δt точка займёт положение М1 и будет иметь скорость 1. Изменение скорости за время Δt1 равно Δ1 = 1 - . Вычитание вектора можно произвести путём прибавления к вектору 1 вектора (-):

Δ1 = 1 - = 1 + (-).

Согласно правилу сложения векторов вектор изменения скорости Δ1 направлен из начала вектора 1 в конец вектора (-), как это показано на рисунке 1.28.

Понаблюдайте за началом движения какого-либо тела. Что вы можете сказать о его скорости?

Приведите друг другу примеры движения тел, при которых изменения скорости происходят только по направлению или только по модулю.

Поделив вектор Δ1 на промежуток времени Δt1 получим вектор, направленный так же, как и вектор изменения скорости Δ1. Этот вектор называют средним ускорением точки за промежуток времени Δt1. Обозначив его через cр1, запишем:

средним ускорением точки за промежуток времени

По аналогии с определением мгновенной скорости определим мгновенное ускорение. Для этого найдём теперь средние ускорения точки за всё меньшие и меньшие промежутки времени:

средние ускорения точки за всё меньшие и меньшие промежутки времени

При уменьшении промежутка времени Δt вектор Δ уменьшается по модулю и меняется по направлению (рис. 1.29). Соответственно средние ускорения также меняются по модулю и направлению. Но при стремлении промежутка времени Δt к нулю отношение изменения скорости к изменению времени стремится к определённому вектору как к своему предельному значению. В механике эту величину называют ускорением точки в данный момент времени или просто ускорением и обозначают .

Запомни
Ускорение точки — это предел отношения изменения скорости Δ к промежутку времени Δt, в течение которого это изменение произошло, при стремлении Δt к нулю.

Ускорение направлено так, как направлен вектор изменения скорости Δ при стремлении промежутка времени Δt к нулю. В отличие от направления скорости, направление вектора ускорения нельзя определить, зная траекторию точки и направление движения точки по траектории. В дальнейшем на простых примерах мы увидим, как можно определить направление ускорения точки при прямолинейном и криволинейном движениях.

В общем случае ускорение направлено под углом к вектору скорости (рис. 1.30). Полное ускорение характеризует изменение скорости и по модулю, и по направлению. Часто полное ускорение считается равным векторной сумме двух ускорений — касательного (к) и центростремительного (цс). Касательное ускорение к характеризует изменение скорости по модулю и направлено по касательной к траектории движения. Центростремительное ускорение цс характеризует изменение скорости по направлению и перпендикулярно касательной, т. е. направлено к центру кривизны траектории в данной точке. В дальнейшем мы рассмотрим два частных случая: точка движется по прямой и скорость изменяется только по модулю; точка движется равномерно по окружности и скорость изменяется только по направлению.

Единица ускорения. Движение точки может происходить как с переменным, так и с постоянным ускорением. Если ускорение точки постоянно, то отношение изменения скорости к промежутку времени, за которое это изменение произошло, будет одним и тем же для любого интервала времени. Поэтому, обозначив через Δt некоторый произвольный промежуток времени, а через Δ — изменение скорости за этот промежуток, можно записать:

Единица ускорения.

Так как промежуток времени Δt — величина положительная, то из этой формулы следует, что если ускорение точки с течением времени не изменяется, то оно направлено так же, как и вектор изменения скорости. Таким образом, если ускорение постоянно, то его можно истолковать как изменение скорости в единицу времени. Это позволяет установить единицы модуля ускорения и его проекций.

Запишем выражение для модуля ускорения:

выражение для модуля ускорения

Отсюда следует, что

Важно
модуль ускорения численно равен единице, если за единицу времени модуль вектора изменения скорости изменяется на единицу.

Если время измерено в секундах, а скорость — в метрах в секунду, то единица ускорения — м/с2 (метр на секунду в квадрате).

Ключевые слова для поиска информации по теме параграфа.
Ускорение. Касательное, центростремительное ускорения

Вопросы к параграфу

    1. Что называется ускорением?

    2. Куда направлено ускорение при прямолинейном движении точки, если модуль скорости точки увеличивается? уменьшается?

    3. Точка движется по криволинейной траектории с постоянной по модулю скоростью. Имеет ли эта точка ускорение?

    4. Может ли точка иметь ускорение, если её скорость в данный момент времени равна нулю?

    5. В каких единицах выражается ускорение?

    6. Автомобиль движется по шоссе с постоянной скоростью и начинает тормозить. Как направлена проекция ускорения на ось, направленную по вектору начальной скорости автомобиля?

    7. Как направлено ускорение равномерно движущейся по окружности точки?

    8. Можно ли утверждать, что если ускорение точки постоянно, то направление её скорости не изменяется?

    9. Лыжник съехал с горы, двигаясь прямолинейно и равноускоренно. За время 20 с, в течение которых длился спуск, скорость лыжника возросла от 5 м/с до 15 м/с. С каким ускорением двигался лыжник?

 

 

???????@Mail.ru