|
|
Главная >> Финансовый менеджмент: теория и практика. Ковалев. В.В. |
|
Методы прогнозирования основных финансовых показателей
5.3.2. Методы обработки временных, пространственных и пространственно-временных совокупностейЭти методы занимают ведущее место с позиции формализованного прогнозирования и существенно варьируют по сложности используемых алгоритмов. Выбор того или иного метода зависит от множества факторов, в том числе имеющихся в наличии исходных данных. По этому параметру можно выделить три типовые ситуации. Наличие временного ряда. Эта ситуация встречается на практике наиболее часто: финансовый менеджер или аналитик имеет в своем распоряжении данные о динамике показателя, на основании которых требуется построить приемлемый прогноз. Динамический (или временной) ряд представляет собой совокупность значений изучаемого показателя, относящихся к некоторым последовательным интервалам или моментам времени; в первом случае ряд называется интервальным, во втором — моментным. Временной интервал, заложенный в основу ряда, чаще всего предполагается постоянным (год, месяц, день и т, п.). Пример интервального ряда: данные о годовом товарообороте магазина за ряд лет; пример моментного ряда: данные о стоимости основных средств данного магазина на начало года за ряд лет. Динамический ряд обычно представляется следующим образом:
Наиболее типовая ситуация при обработке динамического ряда — выделение тренда. Это можно сделать с помощью различных методов1:
1Напомним, что временной ряд характеризуется базовыми количественными характеристиками (темпом роста, темпом прироста, абсолютным значением одного темпа прироста и др.). Подробную информацию об этих характеристиках, равно как и о других инструментальных методах анализа рядов динамики можно найти: (Елисеева, Юзбашев. С. 445—525; Ковалев, 2001(a)].
Как пример применения регрессионных моделей для целей прогнозирования упомянем о двух методах: простом динамическом анализе и анализе с помощью авторегрессионных зависимостей. Первый метод исходит из предпосылки, что прогнозируемый показатель (у) изменяется прямо (обратно) пропорционально с течением времени. Поэтому для определения прогнозных значений показателя у строится, например, следующая зависимость; уt = а0 + at. (5.5) где t - порядковый номер периода. Параметры уравнения регрессии (a0. a1) находятся, как правило, методом наименьших квадратов. Подставляя в формулу нужное значение t можно рассчитать требуемый прогноз.
|
|
|