|
|
|
|
|
§ 3. Второй и третий признаки равенства треугольников Третий признак равенства треугольниковТеорема
Доказательство Рассмотрим треугольники АВС и A1B1C1, у которых АВ = А1В1, ВС = В1С1, СА = С1А1 (рис. 69). Докажем, что
Возможны три случая: луч С1С проходит внутри угла А1С1В1 (рис. 70, а); луч С1С совпадает с одной из сторон этого угла (рис. 70, б); луч С1С проходит вне угла А1С1В1 (рис. 70, в). Рассмотрим первый случай (остальные случаи рассмотрите самостоятельно). Так как по условию теоремы стороны АС и А1С1, ВС и В1С1 равны, то треугольники А1С1С и В1С1С — равнобедренные (см. рис. 70, а). По теореме о свойстве углов равнобедренного треугольника ∠1 = ∠2, ∠3 = ∠4, поэтому ∠A1CB1 = ∠A1C1B1. Итак, АС = А1С1, ВС = В1С1, ∠C = ∠C1. Следовательно, треугольники АВС и А1В1С1 равны по первому признаку равенства треугольников. Теорема доказана.
|
|
|