|
|
|
§ 2. Подходы к измерению информации Содержательный подход к измерению информацииКлод Шеннон, разрабатывая теорию связи, предложил характеризовать информативность сообщения содержащейся в нём полезной информацией, т. е. той частью сообщения, которая снимает полностью или уменьшает существующую до её получения неопределённость какой-либо ситуации.
Клод Элвуд Шеннон (1916-2001) — американский инженер и математик. Является основателем теории информации, нашедшей применение в современных высокотехнологических системах связи. В 1948 году предложил использовать слово «бит» для обозначения наименьшей единицы информации.
Пример 1. Допустим, вы подбрасываете монету, загадывая, что выпадет: «орёл» или «решка». Перед подбрасыванием монеты неопределённость знания о результате равна двум. Действительно, есть всего два возможных результата этого события (бросания монеты). Эти результаты мы считаем равновероятными, т. к. ни один из них не имеет преимущества перед другим. После того как конкретный исход стал известен (например, подброшенная монета упала «орлом» вверх), неопределённость уменьшилась в 2 раза. Таким образом, сообщение о том, что подброшенная монета упала «орлом» вверх, несёт в себе 1 бит информации. Пример 2. Предположим, в книжном шкафу восемь полок. Книга может быть поставлена на любую из них. Сколько бит информации несёт сообщение о том, что книга поставлена на третью полку? Ответ на этот вопрос можно получить, если дополнить исходное сообщение ещё несколькими сообщениями так, чтобы каждое из них уменьшало неопределённость знания в 2 раза. Итак, количество возможных результатов (исходов) события, состоящего в том, что книга поставлена в шкаф, равно восьми: 1, 2, 3, 4, 5, 6, 7 и 8. Сообщение «Книга поставлена на полку не выше четвёртой» уменьшает неопределённость знания о результате в два раза. Действительно, после такого сообщения остаётся всего четыре варианта: 1, 2, 3 и 4. Получен один бит информации. Сообщение «Книга поставлена на полку выше второй» уменьшает неопределённость знания о результате в два раза: после этого сообщения остаётся всего два варианта: 3 и 4. Получен ещё один (второй) бит информации. Сообщение «Книга поставлена на третью полку» также уменьшает неопределённость знания о результате в два раза. Получен третий бит информации. Итак, мы построили цепочку сообщений, каждое из которых уменьшало неопределённость знания о результате в два раза, т. е. несло 1 бит информации. Всего было набрано 3 бита информации. Именно столько информации и содержится в сообщении «Книга поставлена на третью полку». Подумайте, сколько информации содержится в сообщении о том, что книга поставлена на пятую полку. Обоснуйте свой ответ, построив соответствующую цепочку сообщений. Метод поиска, на каждом шаге которого отбрасывается половина вариантов, называется методом половинного деления. Этот метод широко используется в компьютерных науках.
|
|
|