|
|
|
13. Методы изучения физической природы небесных тел
1. Применение спектрального анализаМетодом, дающим ценные и наиболее разнообразные сведения о небесных светилах, является спектральный анализ. Он позволяет установить из анализа излучения качественный и количественный химический состав светила, его температуру, наличие магнитного поля, скорость движения по лучу зрения и многое другое. Спектральный анализ основан на разложении белого света на составные части. Если узкий пучок света пустить на боковую грань трехгранной призмы, то, преломляясь в стекле по-разному, составляющие белый свет лучи дадут на экране радужную полоску, называемую спектром. В спектре все цвета расположены всегда в определенном порядке. Как известно, свет распространяется в виде электромагнитных волн. Каждому цвету соответствует определенная длина электромагнитной волны. Длина волны в спектре уменьшается от красных лучей к фиолетовым примерно от 0,7 до 0,4 мкм. За фиолетовыми лучами спектра лежат ультрафиолетовые лучи, не видимые глазом, но действующие на фотопластинку. Еще меньшую длину волны имеют рентгеновские лучи. Рентгеновское излучение небесных светил, важное для понимания их природы, атмосфера Земли задерживает. За красными лучами спектра находится область инфракрасных лучей. Они невидимы, но созданы специальные приемники инфракрасного излучения, например особым способом приготовленные фотопластинки. Под спектральными наблюдениями понимают обычно наблюдения в интервале от инфракрасных до ультрафиолетовых лучей. Для изучения спектров применяют приборы, называемые спектроскопом и спектрографом. В спектроскоп спектр рассматривают, а спектрографом его фотографируют. Фотография спектра называется спектрограммой. На рисунке 39 показано устройство спектрографа. Свет попадает через узкую щель на объектив, который посылает его параллельным пучком на одну или несколько призм. В призме свет разлатается на составные части и дает спектр. Его изображение строят линзой на фотопластинке и получают спектрограмму. В спектроскопе это изображение рассматривают через окуляр. В астрономических спектрографах, кроме призмы, используют также и дифракционную решетку, которая отражает свет и одновременно разлагает его в спектр.
Существуют следующие виды спектров. Сплошной, или непрерывный, спектр в виде радужной полоски дают твердые и жидкие раскаленные тела (уголь, нить электролампы) и достаточно плотные массы газа. Линейчатый спектр излучения дают разреженные газы и пары при сильном нагревании или под действием электрического разряда. Каждый газ излучает свет строго определенных длин волн и дает характерный для данного химического элемента ; линейчатый спектр. Сильные изменения состояния газа или условий его свечения, например нагрев или ионизация, вызывают определенные изменения в спектре данного газа. Составлены таблицы с перечнем линий каждого газа и с указанием яркости каждой линии. Например, в спектре натрия особенно ярки две желтые линии. Линейчатый спектр поглощения дают газы и пары, когда за ними находится яркий источник, дающий непрерывный спектр. Спектр поглощения представляет собой непрерывный спектр, перерезанный темными линиями, которые находятся в тех самых местах, где должны быть расположены яркие линии, присущие данному газу (рис. 40). Например, две темные линии поглощения натрия расположены в желтой части спектра (Вы можете сравнением легко отождествить линии водорода в спектрах Солнца и Сириуса, используя рисунок заднего форзаца.)
Изучение спектров позволяет производить анализ химического состава газов, излучающих или поглощающих свет Количество атомов или молекул, излучающих или поглощающих энергию, определяется по интенсивности линий. Чем больше атомов, тем ярче линия в спектре излучения или тем она темнее в спектре поглощения. Солнце и звезды окружены газовыми атмосферами. Непрерывный спектр их видимой поверхности перерезан темными линиями поглощения, возникающими при прохождении излучения через атмосферу звезд. Поэтому спектры Солнца и звезд — это спектры поглощения (Рассмотрим изображения разных спектров на форзаце.)
|
|
|