|
|
|
§ 1. Понятие движения Задачи к § 1. Понятие движения1148. Докажите, что при осевой симметрии плоскости: а) прямая, параллельная оси симметрии, отображается на прямую, параллельную оси симметрии;
1149. Докажите, что при центральной симметрии плоскости: а) прямая, не проходящая через центр симметрии, отображается на параллельную ей прямую;
1150. Докажите, что при движении угол отображается на равный ему угол. Решение Пусть при данном движении угол АОВ отображается на угол A1O1B1, причём точки А, О, В отображаются соответственно в точки A1, О1, В1. Так как при движении сохраняются расстояния, то ОА = О1А1, ОВ = О1В1. Если угол АОВ неразвёрнутый, то треугольники АОВ и А1О1В1 равны по трём сторонам, и, следовательно, ∠AOB = ∠A1O1B1. Если угол АОВ развёрнутый, то и угол А1О1В1 развёрнутый (докажите это), поэтому эти углы равны. 1151. Докажите, что при движении параллельные прямые отображаются на параллельные прямые. 1152. Докажите, что при движении: а) параллелограмм отображается на параллелограмм; б) трапеция отображается на трапецию; в) ромб отображается на ромб; г) прямоугольник отображается на прямоугольник, а квадрат — на квадрат. 1153. Докажите, что при движении окружность отображается на окружность того же радиуса. 1154. Докажите, что отображение плоскости, при котором каждая точка отображается на себя, является наложением. 1155. АВС и А1В1С1 — произвольные треугольники. Докажите, что существует не более одного движения, при котором точки А, В и С отображаются в точки А1, В1, С1. 1156. В треугольниках АВС и А1В1С1 АВ = А1В1, АС = А1С1, ВС = В1С1. Докажите, что существует движение, при котором точки А, В и С отображаются в точки А1, В1 и С1, и притом только одно. Решение По условию задачи треугольники АВС и А1В1С1 равны по трём сторонам. Следовательно, существует наложение, т. е. движение, при котором точки А, В и С отображаются соответственно в точки А1, В1 и С1. Это движение является единственным движением, при котором точки А, В и С отображаются соответственно в точки А1, В1 и C1 (задача 1155).
|
|
|