|
|
|
Глава 2. Постоянный электрический ток
§ 2.5. Зависимость электрического сопротивления от температуры
Изменение температуры проводника вызывает изменение его сопротивления. Вот некоторые предварительные соображения. С одной стороны, повышение температуры проводников приводит к увеличению числа столкновений упорядоченно движущихся заряженных частиц с частицами, составляющими проводник. В результате уменьшается средняя скорость направленного движения заряженных частиц, и соответственно уменьшается сила тока. Следовательно, увеличение температуры может привести к увеличению сопротивления. С другой стороны, повышение температуры может привести к увеличению числа свободных заряженных частиц проводника в единице объема (например, число ионов раствора электролита растет с повышением температуры). Это обстоятельство способствует увеличению силы тока. Следовательно, повышение температуры может привести и к уменьшению сопротивления проводника. В зависимости от преобладания того или другого фактора с увеличением температуры сопротивление проводника может или увеличиваться (металлы), или уменьшаться (растворы электролитов, уголь), или оставаться практически неизменным (специальные сплавы). Все это подтверждается на опыте. Включим в цепь последовательно электрическую лампу и железную проволоку, свернутую спиралью. Нагревая спираль на горелке, мы увидим, что свечение лампы становится менее ярким. Если в цепь вместо лампы включить амперметр, то он покажет, что при нагревании железной спирали сила тока в цепи уменьшается. Отсюда следует, что при нагревании проволоки ее сопротивление увеличивается. Точно таким же образом можно провести опыты с другими металлами, сплавами металлов, растворами электролитов. Если при 0 °С сопротивление проводника равно R0, а при температуре t оно равно R, то относительное изменение сопротивления" как показывает опыт, с большой степенью точности можно считать пропорциональным изменению температуры Δt:
Коэффициент пропорциональности α называют температурным коэффициентом сопротивления. Он характеризует зависимость сопротивления вещества от температуры. Температурный коэффициент сопротивления численно равен относительному изменению сопротивления проводника при нагревании на 1 К. Для всех металлических проводников а > 0 и незначительно меняется с изменением температуры. Если интервал изменения температуры невелик, то температурный коэффициент можно считать постоянным и равным его среднему значению на этом интервале температур. У чистых (не имеющих примесей) металлов
У растворов электролитов а < 0, так как с ростом температуры их сопротивление уменьшается. Например, для 10%-ного раствора поваренной соли α = -0,02 К-1. При нагревании геометрические размеры проводника меняются мало. Сопротивление проводника меняется в основном за счет изменения удельного сопротивления. Зависимость удельного сопротивления от температуры легко найти, если в формулу (2.5.1) подставить значения После простых преобразований найдем, что ρ = ρ0(1 + αΔt) (2.5.2) Таким образом, удельное сопротивление линейно зависит от температуры. На рисунке 2.14 эта зависимость изображена для металлических проводников, а на рисунке 2.15 — для растворов электролитов. Хотя коэффициент α довольно мал, учет зависимости сопротивления от температуры при расчете нагревательных приборов совершенно необходим. Так, сопротивление вольфрамовой нити обыкновенной лампы накаливания увеличивается при прохождении тока по ней более чем в 10 раз! У некоторых сплавов, например у сплава меди с никелем — константана, температурный коэффициент сопротивления очень мал: α ≈ 10-5 К-1. Еще меньше температурный коэффициент сопротивления у манганина. Эти сплавы одновременно обладают большим удельным сопротивлением. Поэтому они используются для изготовления эталонных сопротивлений, магазинов сопротивлений, применяются для изготовления шунтов и добавочных сопротивлений к измерительным приборам (см. § 2.8) и т. д., т. е. в тех случаях, когда сопротивление не должно изменяться при колебаниях температуры. В таблице 4 приведены значения температурного коэффициента сопротивления для некоторых чистых веществ и сплавов.
Зависимость сопротивления металлов от температуры используется в термометрах сопротивления. Самый простой термометр сопротивления — это намотанная на слюдяную пластинку тонкая платиновая проволока (рис. 2.16), зависимость сопротивления которой от температуры хорошо известна. Термометр сопротивления приводят в тепловой контакт с телом, температуру которого желают измерить (например, помещают в печь), а концы обмотки включают в цепь. Измеряя сопротивление обмотки, можно определить температуру. Такие термометры позволяют измерять очень низкие и очень высокие температуры, когда обычные жидкостные термометры непригодны.
Платиновыми термометрами можно измерять температуру от -200 до +600 °С с погрешностью до 0,0001 °С.
|
|
|