|
|
|
Глава 3. Электрический ток в различных средах
§ 3.1. Электрическая проводимость различных веществВ этой главе вы познакомитесь с физическими процессами, обусловливающими прохождение тока в различных средах.
По способности веществ проводить электрический ток их можно разделить на несколько групп. К одной группе относятся вещества, которые содержат много свободных заряженных частиц, и поэтому в них легко создать электрический ток. Их называют проводниками. К другой группе относятся вещества, в которых мало свободных заряженных частиц. Поэтому сила тока в них даже при большой разности потенциалов очень мала. Эти вещества называют изоляторами или диэлектриками. Деление веществ на проводники и изоляторы условно. В природе нет идеальных изоляторов. Даже лучшие из известных изоляторов имеют некоторое, небольшое по сравнению с проводниками число свободных заряженных частиц. В диэлектриках концентрация свободных зарядов не превышает 1017 м-3, а в металлах концентрация свободных электронов порядка 1028 м-3. ПроводникиК проводникам прежде всего следует отнести все металлы, среди которых наилучшей электропроводностью обладают серебро, медь, алюминий. Металлические проводники находят широчайшее применение в передаче электроэнергии от источников тока к потребителям. Эти проводники используются также в генераторах, электродвигателях, трансформаторах, электроизмерительных приборах и т. д. Наряду с металлами хорошими проводниками являются водные растворы или расплавы электролитов и ионизованный газ — плазма. При определенных условиях и в вакууме может существовать электрический ток. Так, в вакуумных электронных приборах электрический ток образуют потоки электронов, поступающие из специальных устройств. ДиэлектрикиК числу хороших изоляторов относятся янтарь, фарфор, резина, стекло, парафин. Жидкими диэлектриками являются керосин, минеральное (трансформаторное) масло, лаки, чистая (дистиллированная) вода и др. Лучший изолятор — вакуум. Неионизованные газы, в том числе и воздух, также хорошие изоляторы. Однако при некоторых условиях, например в сильном электрическом поле, происходит расщепление молекул диэлектрика на ионы, и вещество, которое при отсутствии электрического поля или в слабом поле было диэлектриком, становится проводником. Напряженность электрического поля, при которой начинается ионизация молекул диэлектрика, называется пробивной напряженностью (электрической прочностью) диэлектрика. Поэтому при использовании диэлектриков в электрических установках наибольшее значение напряженности электрического поля выбирают равным допускаемой напряженности. Допускаемая напряженность обычно в несколько раз меньше пробивной. В качестве примера приведем значения пробивной напряженности для некоторых диэлектриков: воздух — 3000 кВ/м, масло трансформаторное — 10 000 кВ/м, фарфор — 8000...15 000 кВ/м, слюда — 80 000...200 000 кВ/м. ПолупроводникиКроме проводников и диэлектриков имеется группа веществ (в основном твердых), проводимость которых занимает промежуточное положение между проводниками и диэлектриками. Эти вещества не настолько хорошо проводят электрический ток, чтобы их назвать проводниками, и не настолько плохо, чтобы их отнести к диэлектрикам. Поэтому они получили название полупроводников. К ним относятся кремний, германий, селен и многие другие вещества. Существуют и жидкие полупроводники. Для полупроводников характерно резкое изменение электропроводности с изменением температуры. При низких температурах число свободных зарядов в них мало и по своим свойствам эти вещества близки к диэлектрикам. С повышением температуры число свободных носителей заряда увеличивается настолько, что эти вещества уже можно отнести к хорошим проводникам. Электропроводность полупроводников зависит также от падающего на них света, напряженности и направления электрического поля и особенно резко изменяется при введении в их состав незначительного количества примесей. До недавнего времени полупроводники не играли заметной практической роли. В электротехнике и радиотехнике применяли исключительно различные проводники и диэлектрики. Положение существенно изменилось, можно даже сказать, что в радиотехнике произошла революция, когда сначала теоретически, а затем экспериментально была открыта и изучена легко осуществимая возможность управления электрической проводимостью полупроводников. Полупроводники нашли широкое применение в электротехнике, радиотехнике, в электронно-вычислительных машинах, автоматике и т. д.
|
|
|