|
|
|
Глава 1. Кинематика точки и твёрдого тела
Движение с постоянным ускорениемДопустим, движение с постоянным ускорением совершается в одной плоскости, пусть это будет плоскость XOY. Если вектор начальной скорости и вектор ускорения не лежат на одной прямой, то точка будет двигаться по кривой линии. Следовательно, в этом случае с течением времени будут изменяться обе её координаты х и у. Обозначим через x0 и у0 координаты в начальный момент времени t0 = 0, а через х и у координаты в момент времени f. Тогда за время Δt = t — t0 = t изменения координат будут равны Δх = х - х0 и Δу = у - у0. Отсюда х = х0 + Δх, (1.13)
Значит, для нахождения положения точки в любой момент времени надо знать её начальные координаты и уметь находить изменения координат Δх и Δу за время движения. В случае движения, при котором проекция скорости изменяется со временем (рис. 1.32, кривая 1), величину Δx: за время t найдём следующим образом. Из § 4 мы знаем, что при равномерном движении изменение координаты точки за время Δt можно определить на графике зависимости
Разделим его на малые интервалы Δt, в пределах которых проекцию скорости можно считать постоянной и равной её среднему значению. Рассмотрим интервал Δti Тогда Δxi = В случае равноускоренного (ах = const) движения (рис. 1.32, прямая 2) изменение координаты тела Δх численно равно площади трапеции АВСО. Длины оснований ОА и ВС этой трапеции численно равны проекциям начальной и конечной скоростей, а длина высоты ОС — времени движения.
По формуле для площади трапеции имеем
Учитывая, что
Мы рассмотрели случай, когда Изменение координаты Δу можно найти таким же способом, и выражение имеет аналогичный вид
Подставив найденные выражения для изменения координат Δx и Δу в формулы (1.13), получим уравнения для координат при движении с постоянным ускорением как функции времени (их называют кинематическими уравнениями движения):
Обычно в условиях задачи даются значения (модули) скоростей и ускорений. Поэтому удобнее использовать уравнение
При движении точки в плоскости XOY двум уравнениям (1.14) соответствует одно векторное уравнение
Обратите внимание на то, что с помощью формул (1.14) и (1.15) можно найти только положение движущейся точки в любой момент времени. Для нахождения пути необходимо более подробно исследовать траекторию, определить точки, в которых, возможно, произошло изменение направления движения.
|
|
|