|
|
|
Глава 7. Разложение многочленов на множители
§ 31. Вынесение общего множителя за скобки (окончание)Пример 2. Разложить на множители многочлен -х4у3 - 2х3у2 + 5х2. Р е ш е н и е. Воспользуемся сформулированным алгоритмом.
1) Наибольший общий делитель коэффициентов -1, -2 и 5 равен 1. 2) Переменная х входит во все члены многочлена с показателями соответственно 4, 3, 2; следовательно, можно вынести за скобки х2. Переменная у входит не во все члены многочлена; значит, её нельзя вынести за скобки. 3) В ы в о д: за скобки можно вынести х2. Правда, в данном случае целесообразнее вынести за скобки -х2. Получим -x4y3 - 2х3у2 + 5х2 = -х(х2у3 + 2ху2 - 5). Пример 3. Можно ли разделить многочлен 5а4 - 10а3 + 15а5 на одночлен: а) 5а3; б) 25а2? Если да, то выполнить деление. Р е ш е н и е. а) В примере 1д) мы получили, что 5а4 - 10а3 + 15а5 = 5а3(а -2 + 3а2). Значит, заданный многочлен можно разделить на 5а3, при этом в частном получится а - 2 + 3а2.
Значит, заданный многочлен можно разделить на 25а2, при этом в частном получится
Подобные примеры мы рассматривали в § 29; просмотрите их, пожалуйста, ещё раз, но уже с точки зрения вынесения общего множителя за скобки. Разложение многочлена на множители с помощью вынесения общего множителя за скобки тесно связано с двумя операциями, которые мы изучали в § 26 и 29, — с умножением многочлена на одночлен и с делением многочлена на одночлен. А теперь несколько расширим наши представления о вынесении общего множителя за скобки. Дело в том, что иногда алгебраическое выражение задаётся в таком виде, что в качестве общего множителя может выступать не одночлен, а сумма нескольких одночленов. Пример 4. Разложить на множители 2х(х - 2) + 5(х - 2)2. Р е ш е н и е. Введём новую переменную у = х - 2. Тогда получим 2х(х - 2) + 5(х - 2)2 = 2xy + 5у2. Замечаем, что переменную у можно вынести за скобки: 2ху + 5у2 = у(2х + 5у). А теперь вернёмся к старым обозначениям: у(2х + by) = (х - 2)(2х + 5(х - 2)) = (х - 2)(2х + bх - 10) = (х - 2)(7х - 10). В подобных случаях после приобретения некоторого опыта можно не вводить новую переменную, а использовать следующую запись: 2х(х - 2) + 5(х - 2)2 = (х - 2)(2х + 5(х - 2)) = (х - 2) (2х + 5х - 10) = (х - 2)(7х - 10). Вопросы для самопроверки 1. Как вы понимаете, что означает процесс вынесения множителя за скобки? 2. Сформулируйте алгоритм отыскания общего множителя нескольких одночленов. 3. Приведите пример трёхчлена, у которого можно вынести за скобки общий множитель 3х2.
|
|
|