Главная >> Геометрия 7—9 классы. Атанасян

§ 2. Параллелограмм и трапеция

Задачи к § 2. Параллелограмм и трапеция

371. Докажите, что выпуклый четырёхугольник ABCD является параллелограммом, если:

    a) ∠BAC = ∠ACD и ∠BCA = ∠D АС;
    б) АВ || CD, ∠A = ∠C.

372. Периметр параллелограмма равен 48 см.

Найдите стороны параллелограмма, если:

    а) одна сторона на 3 см больше другой;
    б) разность двух сторон равна 7 см;
    в) одна из сторон в два раза больше другой.

373. Периметр параллелограмма ABCD равен 50 см, ∠C = 30°, а перпендикуляр ВН к прямой CD равен 6,5 см. Найдите стороны параллелограмма.

374. Биссектриса угла А параллелограмма ABCD пересекает сторону ВС в точке К. Найдите периметр этого параллелограмма, если ВК = 15 см, КС = 9 см.

375. Найдите периметр параллелограмма, если биссектриса одного из его углов делит сторону параллелограмма на отрезки 7 см и 14 см.

376. Найдите углы параллелограмм: ABCD, если:

    a) ∠A = 84°;
    б) ∠A - ∠B = 55°;
    в) ∠A+∠C = 142°б
    д) ∠CAD = 16°, ∠ACD = 37°.

377. В параллелограмме MNPQ проведён перпендикуляр NH к прямой MQ, причём точка Н лежит на стороне MQ. Найдите стороны и углы параллелограмма, если известно, что МН = 3 см, HQ = 5 см, ∠MNH = 30°.

378. Докажите, что параллелограмм является выпуклым четырёхугольником.

Решение

Рассмотрим параллелограмм ABCD (см. рис. 157) и докажем, что он лежит по одну сторону от каждой прямой, проходящей через две его соседние вершины. Возьмём, например, прямую АВ. Отрезок CD не имеет общих точек с прямой АВ, так как АВ || CD. Значит, этот отрезок лежит по одну сторону от прямой АВ. Но тогда и отрезки ВС и AD лежат по ту же сторону от прямой АВ. Таким образом, параллелограмм ABCD лежит по одну сторону от прямой АВ.

379. Из вершин В и D параллелограмма ABCD, у которого АВ ≠ ВС и угол А острый, проведены перпендикуляры ВК и DM к прямой АС. Докажите, что четырёхугольник BMDK — параллелограмм.

380. На сторонах АВ, ВС, CD и DA четырёхугольника ABCD отмечены соответственно точки М, N, Р и Q так, что АМ = СР, BN = DQ, BM = DP, NC = QA. Докажите, что ABCD и MNPQ — параллелограммы.

381. На рисунке 163 изображены два одинаковых колеса тепловоза. Радиусы О1А и О2В равны. Стержень АВ, длина которого равна расстоянию О1О2 между центрами колёс, передаёт движение от одного колеса к другому. Докажите, что отрезки АВ и О1О2 либо параллельны, либо лежат на одной прямой.

    рис. 163

382. Диагонали параллелограмма ABCD пересекаются в точке О. Докажите, что четырёхугольник A1B1C1D1, вершинами которого являются середины отрезков ОА, ОВ, ОС и OD, — параллелограмм.

383. На диагонали BD параллелограмма ABCD отмечены две точки Р и Q так, что РВ = QD. Докажите, что четырёхугольник APCQ — параллелограмм.

384. Через середину М стороны АВ треугольника АВС проведена прямая, параллельная стороне ВС. Эта прямая пересекает сторону АС в точке N. Докажите, что AN = NC.

Решение

Через точку С проведём прямую, параллельную прямой АВ, и обозначим буквой D точку пересечения этой прямой с прямой MN (рис. 164). Так как AM = МВ по условию, а МВ = CD как противоположные стороны параллелограмма BCDM, то AM = DC. Треугольники AMN и CDN равны по второму признаку равенства треугольников (AM = CD, ∠1=∠2 и ∠3 = ∠4 как накрест лежащие углы при пересечении параллельных прямых АВ и CD секущими АС и MD), поэтому AN = NC.

    рис. 164

Продолжение >>>

 

 

???????@Mail.ru